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‘
~The robustness of stability conditions for linear 

In order to avoid repetitions , we start by def i n i ng
rime-invariant feedback systems is examined some terms and some notations.
assuming three different types of representations:
state—space representation , copr ime ma tr ix  II. Preliminary Def initions
f rac tion representation , and transfer c~~p~
representation. 4e-.e4e~sj the impor t~nee ,of IR , ~~, IR(s) and IR [s[ denote , res pec t i ve ly ,  the
cer tain details of the represen ta t ion used and , f ie lds  of real numbers , of complex numbers , of
even more , the importance of making sure that rational functions with real coefficients and
the allowed perturbations be relevant to the the commutative ring of polynomials with real
physical situation under study, coefficients. The superscripts “n” and “n,rm”n nxm

~ 

Introdu ction ______

(as in Ut , Ut (s) ) denote the corresponding
ordered n—tuples and nxm arrays.

= {s E C~Re s > Oj denotes the closed right—
h~ lf—plane. ~ : {s ~ ~lRe s < 0) denotes

Engineers design for production: therefore it the 2R~~ 
lef t—half—plane. Given any scalar

is required that their nominal design as well as rational function , we assume once and for all that
a very high portion of the systems produced it is written as n(s)/d(s) where the polynomials
which suffer from element deviations and manu— n and d are coprime and d is monic.

_ J  facturing tolerances — meet the specifications.
Fur thermore , the systems produced must meet the A continuous—time , linear , time—invariant , lumped ,

~ Li..1, specifications not only as they leave the multi—input multi—output system is said to be

— 
production line but also in the field where exponentially stable (abbr. exp. stable) iff its
they suffer from temperature effects , aging, transfer function C(s) E Ut(S)~~

m is proper
weather ing etc.— . Hence the interest in (i.e. bounded at infinity) and C(s) has no
sensitivity and robustness. It is for these ~+— po1es. For example , for the system shown on
reasons that this subject has an extensive Fig. 1, this means that G: (u

1
,u2)~—s(e1, e2) has

literature [e.g. l,2J . these properties.

In this paper , we consider the robustness of the III. System Description
stability conditions for a continuous—time ,
linear, time—invariant , lumped , multi—input We consider the input—output stability problem of
mult i—output feedback system. (See Fig. 1) If the continuous—time , l inear , time—invariant , lumped ,
the feedback system is made of an interconnection multi—input multi—output feedback system
of stable subsys tems , it seems intuitively clear S: (u 1, u2)—~(e1, e2) described in frequency domain
that under some reasonable conditions and under by (see Fig. 1)
reasonable allowed perturbations the stability
conditions are robust. But what if the subsystems u1 

e
1 

+ G
2
e
2 

U
2 

= e
2 

— G
1
e
1 

(1)

are unstable? Might it not happen that due to
perturbation some kind of pole—zero cancellation 

where G1, C2 E IR (S)
mut, the u1

’S are the inputs

is des troyed? The pur pose of this paper is to and the ej’s are the “errors”. The transfer function

examine the conditions which, under several 
of S is C: (u1, u,)’—(e ,e ),t Throug hout this
this paper , we mate the }odowing assumption:representations , guarantee robustness of the

stability conditions. We will find that the
nature of the representation and the nature of Assump t ion: The transfe r  func t ions G

1
,G
2 

are pr oper
the allowed perturbations play a cr ucial role. (i.e. bounded at inf inity) and

This will also lead us to make some remarks on the

tDr Callier  was wi th the Bel gian Na tiona l Fund ~~e only need to consider (u1
,u
2)~
—4(e1,e1 ) because

f or Scien t if ic Re sea rch , Brussels, Bel gium , and the map (u
1
,u
2
)I—4(y1,y 2

) is exp. stable it~ and
is now with the Department of Mathematics, Facul tes only if the map (u 1, u2)’—. (e1,e2) is exp. stable
(Jnlversi tafres de Namur , Belgium. [10].
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I ~
det[l+C

2
(~) ~~

(
~) 1 # 0. (2) This addi tional zero is very large : its si gn is

posi t ive or nega t ive accord ing to óa ,~1 < 0 or
This assumption imp l ies tha t the tr ans fe r  f unc t ion 6a

1 
> 0, respectively. similarly, if there had

C of S exists .ind is proper. Note that a transfer been several additional terms of degrees larger
function must be proper in order to have a than n, there would have been several such zeros
state—space representation. with very large magnitude and whose location in

the s—plane depends on the magnitudes and signs
We investigate the following question: given that of the Sa_ i ’s. Note that when the perturbed
C1, G2 are described in a specified way and given problem is of the form (6), we are essen tia l ly
some set of allowed perturbations , are the dealing with a singular perturbation problem;
input—output stability conditions for the system see e.g. [4,5).
S robust under the allowed perturbations in
G1, C2? By this we mean: if the feedback system V. Robustness Results
S is exp. stable for the nominal values of
C1, G2 ,  does it imply that it will remain exp. Case I: The transfer functioris~ j and G7 are
stable for all sufficiently small perturbations specified by minimal state—space
in C1, G2, selected from the allowed set? It will represen tat ions
turn out that the answer depends very much on
the represen tation of C1, C2 and the se t of 

It is well known that if [A ,B,C,D) is a minimal
allowed per turbations. state—space representation of the proper transfer

func t ion C, then G is exp. stable if and onlyIV. A Preliminary Lemma if det (sI—A) has all its zeros in ~~~~. For
i 1,2, let [A 

_______All the argumentation below hinges on a lemma tI~~t 
j,Bi, Ci,Di J be a minimal state—

essentially says ‘small per turba tions in the space representation of the proper tran sfer
function Gcoeff icients of an algebraic equa tion cause with the state xi E ~R

t
~i. Let

small perturbations in its zeros.” More precisely, (A ,B,C,D] be the state—space representation of the
we state a well—known lemma, feedback system S: (u

1
,u
2
),—.(e1, e2) wi th the

Lemma [3, Thm 9.17.4]. Let D(zi;t) denotes the 
state (x1, x2). We know that [6) (i) [A ,B,.~,DJ is

a minimal state—space representation of S,(ii)
open disc in C cen tered on Z j  and with radius t .
Consider the polynomial p defined by

n n—i 
+ ... + a a + a (3) 

rA —B (1+0 D )
_b
D C —B (1+0 0 )~~ C 1p(s) 

~~ 
+ a

1
s n—i n A 

1 1 2 1  2 1  1 2 1  2

where aj E ~~~~, Vi , and without loss of generality, L 82 ( I+D
1
D
2
)
1
C
1 

A
2
_B
2

( I+D
1
D
2
)~~ D1

C
2j

a
0 > 0. Let the polynomial p have q pairwise (7 )

distinct zeros: z1, z2 z with respective
multiplicities mi, (hence 1m~ = n). Then for and (iii)

all c > 0, there is an r~(t) > 0 such that for
all ~~ satisfy ing det(sI—A) = det (sI—A

1
)’det(sI—A

2
) d e t (I+C

2
C
1
)(s) 

_
(8) ~

“ .~S a l  < n i 0,1 n (4)
1

the perturbed polynomial Now the feedback system S is exp. stable if and
only if det(sI—A) has all its zeros in C_ ;

(a
0
+~a0

)sn + ... + (a +c5a 
— 
)s + (a +6a ) furthermore for ~~~ perturbation [6A i, oBi, 6C i,oD iln—l n l fl n in the constant matrices [A i, Bi, Ci, Di), i = 1,2,(5) the degree of det(sI—A) remains equal to n1s-n2.

st ill has m
~ 

zeros in D(z
1
;c) for i = 1,2,... ,q. In view of (7), we obtain from the lemma above

a well—known result:
Comments: (i) if all zeros of p were simple,
this lemma would be a direct consequence of Robustness Result 1.1.
the implicit function theorem; the point is that
the continuous dependence of the zeros is still If the given feedback system S is exp. stable at
valid in the case of multip le zeros. (ii) It IS the nominal da ta poin t, then for  any s u f f i c i e ntly
~r uc ia1 to observe tha t the degree of p was small perturbation [6A j,oB i, oC i, tSDi), i = 1,2,a f f e c ted by the per tu rba t ions: indeed suppose the resulting perturbed system is still exp. stable.
that instead of (5) we had

n+ 1
p(s) 6a_ 1 s + (a0

+6a
0

)sn + ... + (a +óa ) Remark 1.1: In many applications, neither measure—n n
ments nor system—component element values directly(6)
specify the [A i, Bi, Cj,DiI; therefore, eng ineers

as the perturbed polynomial; then, for r~ > 0 should ask whether the perturbations [6A i, SB j,oC~ ,6U i 1
sut ilcient ly small , if óa I < r~ for of this analysis cover all the poss ible per turba tions

- -1 ,0,1 n , ~ would have n+1 zeros, n of expected in the contemplated physical environment.
them in the discs D(zi;r) and one approximately
equa l to — (a

0
+6a

0
)/’~a_ 1 . (This approximate zero Remark 1.2: Note that for sufficiently small

is the leading term of a sequence of successive allowed per turba tions , [A i+oA i, Bi+68i, Ci+1SC1,
approximation which converges for n small). Di+óD il will also be a minimal state—space

602



- 
- ‘. representation. However Robustness Result 1.1

still holds even if [Ai+oA i, Bi+IB i, Ci+IC i, Di+iD i] 0(s). Then degree of del 0 < mm 

~E ~~~ E ci).
is not minimal. i—i i—i

If the equality holds with E ri. then D fs saidCase I I :  The transfe r  func t ions C1 and C
2 

are 
i=l

specified by coprime matrix fractions
representations to be row—proper and if the equality holds with

n
Le t C1, G

2 
be specified by their coprime c~ , then 0 is said to be column—proper [7 ,8].

fac toriza t ions : 
Thus ii 0 is either row—proper , or column-proper ,
then it is easy to see that the degree of det 0C = N D

1~ 
G
2 

= D
2~
N
21 will never be increased by any allowed perturbation1 lr ________

nxn ID. It is well—known that [7 ,8) for any nxnand thewhere N D D
2~

, N21 
E IR [s] 

polynomial matrix 0(s) with del fl(s) ~ 0, thereit ’ Ir
pairs  (N ,D ) ,  (N ,D ) are r ight—coprime and exist unimodular matrices Ti (s), Ii (s) such thatlr l r 2 1 21 r c
left—coprime respectively [7,8,9]. Let the 0(s) U (5) is column—proper and U (s) fl(s) is row—
allowed parame ter per turba t ions be per turba tions 

proper. Therefore given a rational matrix , therein the coefficients of each scalar polynomial exist a left—coprime factorization (N
1
,D,) such

entry in the four polynomial matrices Nir~ lr ’ that D~ is row—proper and a right—coprime
_ _ _ _ _ _ _ _ _ _ _ _ _ _D

21
, N

21
, wi tho ut increasing the degree of any 

factorization (N ,D ) such that P is column—proper.
scalar polynomial.t t  We know that [10,11) the r r r
feedback system S: (u1, u2)~—,(e1,

e
2
) is exp. Summarizing the facts above , we have

stable if and only if its charac teristic Robustness Result 11.2.
polynomial

I: = det[D
21
D
1 + N21N1 ] (9) Suppose that P is row—proper and 0 is column—

21 it
proper; if the given feedback system S is exp.

has all its zeros in ~~~~. We can also write stable at the nominal data point , then f or any
su f f i c i e n tly small  allowed perturbation (~ N ,~~Dir Irdel 0 ~det D detfI + D

2~
N2I Nir D1~ ] ID 7~~,6N

21) the resulting perturbed system is still2 1 lr
ex p. stab le.

22. lr
= det D ‘det D ‘det[I + C

2
G
1

] (10)
Remark 11.2: The requirement that 0 - and 0 beBy assumpt ion ( 2 ) ,  C1, C

2 
are pr oper and , fo r  2~. lr

resp. row—proper and column—proper is very
large a , detil + C2G1](s) 

= detil + G
2
(~ )C

1
()J important , for otherwise the degree of the

+ 0(1/a). Hence degree of t~ degree of characteristic polynomial may increase as a rca~.ltdet 0 + degree of del 0 . In view of (10) it of an arbitrarily small allowed perturbation.22. lr
follows from the lemma : This is shown in the following example.

Robustness Result 11.1. Example: Let 0
21 

N
22. 

= N
1 

= I and

If the given feedback system S is exp. stable at r5+2 s+ll

the nominal da ta poin t, then for any sufficiently ir 
= 

Ls+l s+3j
small allowed perturbation (IN ,ID ,SD ,6N

21)it it 22.
which does not increase the degree of det 0

21 
and Hence i(s) = deti D D +N N ~(s) = 5s+ll. Now22. lr 21 ir

D is not column—proper: consider a smallde t 0 , the resulting perturbed system is still lr —lr perturbation say, a in toe coefficient of s in one
exp. stable. 

of the diagonal elements of D
1
. For example ,

Remark 11.1: Note that for sufficiently small when the (1,1) element becomes (l+a)s + 2 we obtain
allowed perturbations , (N ir~ SN i , Di +ID ) will 2r r a(s) + Il(s) = as + (5+4cz)s + 11be right—coprime and (N

21
+IN

21,
D21+ID21~ will be

lef t-coprime. However Robustness Result 11.1 which has a zero wi th posi tive real par t whenever
still holds even if they are not coprime. a < 0. U
Let r

~ 
(resp. c

1
) be the highest power of s in the Case III: The transfer functions C

1 
and C

2 
are

ith row (resp. column) of an nxn polynomial matrix specified by the 2n2 scalar ra tional
func tions which are the elements of C

~ White S.ctPon ~~~Viewing the matrix entries as polynomials, no te and C
2
. 

Buff ~~~~ 0
that the zero polynomial has degree —= and a non-
zero constant polynomial has degree 0. Thus the Let the allowed parameter perturbations be the
allowed perturbations will not cause a zero in perturbations in the coefficients of the numerator—
any o f the f our polynomial ma trices to become and denominator—polynomials of each scalar
nonzero, rational function entry in the matrices C1, C2

subject to the condition that they

OISTR~’JTION/AYAQ.ABtt .ITY I~OES
i~ft. and/or SPECIM
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k do not increase the degree of any scalar where the sums are taken over oil the £
+
—poles

• polynomial. A of C
1 

and C2, or equiva len t ly ,  over al l  the

111.1: Single—inp ut single—output subsystems poles A in C
1 

of C
1 

and C
2
. Wi th this in mind we

see that some sufficiently small allowed perturbation
Consider the case where C

1 
n
i

/d i, i 1,2, may change the required number of encirclements in

where n
1
, di 

are coprime scalar polynomials , i.e., only one way : namely to hate

they are coprime elements of IR[sI. Clearly the 
~~characteristic polynomial of the feedback system 1,2 A

S is (d
1
d
2
+n~n~). Since d1, d

2 
are scalar

V polynomials, they are both row—proper and column— where the sums are taken over all the poles A in

proper. Thus by Robustness Result 11.2 , if the C
1 

of per turbed tr a n s f e r  func t ions C
1 

+ SC
1

given feedback system is exp. stable at the nominal and C2 
+ IC

2
.

da ta poin t, for any sufficien tly small allowed
perturbation (for Case III), the resul ting For examp le, consider
perturbed system is still exp. stable. 

G
1
(s) —~-~L 1.51 C

1
(s) + 1C

1
(s) = i [ 

~J111.2: Multi—input multi—output subsystems

f2 1
Recall the notations introduced in Case I and then l(C

1
;l) rank

13 ~ s} = l~ (lS ,p.l15], but ,

for  any a ~ 0, l(G1+6C
1
;1) 2.

det(sI—A) = det (sI—A
1
)’det(sI—A

2
)’det(I+G

2
G
1
)(s)

(8) Therefore we must formulate our result as follows :

Let Robustness Result 111.1.

p
0+
: = number of C

+
_zeros of det(sI—A

1
) 

If the given feedback system S is exp. stable at
the nominal da ta poin t, then fo r  any s u f f i c i e ntly‘de t(sI—A

2
) ,  counting multiplicities . 

small allowed per turba tio
(11) 

ns IC
1
, SC

2 
which sa ti s f y

Then recall the CraphicaJ Stability Conditions: E E l(G1 ;A )  E E ~‘~(G
~
+oC

i ;X )
[12 ,13] the feedback system S: (u1, u2)~

—..(e
1
,e
2
) i=1,2 A i l ,2

is exp. stable if and only if the Nyquist where the sums are taken over all the poles A in
diagram of s,—.det[I + C

2
(s)C

1
(s)J — for the C

i 
of the correspond ing transfer  func t ions, the

contour C which is duly indented to the left at resulting perturbed system is still exp. stable.

all ia—ax is poles of det [I + C
2

( s )G
1
(s)]—does U

not go throug h the ori gin and does encircle the in par ticular, robustness of stability condi tions
origin p~~ times in the counterclockwise sense, for the feedback system S follows if C

1 
and C

2 
are

both exp. stable.
Now suppose that for the nominal parameter values
in C

1 
and G

2 
the Nvquist diagram satisfies the In the following discussion , we res tr ict ourselves

stability conditions above. Consider the effect to simple C
+
—poles of C

1 
and 0

2 
beca use there

on the Nyq uist diagram of small allowed parame ter always exists some allowed per turba t ion which
per turba tions in C

1 
and C

2
. Now, (a) for each splits a multiple pole of C~ (i=1 and/or 2) in

a E C, excep t at poles , det[I + C
2
(s)C

1
(s)] is a many ways. To see this suppose that the (1,1)

continuous function of all the numerator— and element of C
1 
has a third—order pole at s —1 , thus

denominator—coefficients of C
1 

and C
2
; (b) the its denominator , d11, has the form

Nyquist diagram of the contour C is a compact
curve in C , therefore for any sufficiently small d11( s) = (~+l)~ p11(s) with p11( l )  ~ 0

allowed parameter perturbation , the Nyquis t
diagram will still avoid the origin and encircle This tr iple pole can be split into three simple
it p times; (c) for sufficiently small allowed poles, f or examp le

0+
per turbations and for a fixed contour C (indented
to the left), any ia—axis pole of C1 

and /o r  C d11(s) + 6d11
(s) = [(~+l)~ + c 3 ]p 11( s )

that is perturbed will still remain in Ci~ 
the or in to s double pole and a simple pole

open set in C enclosed by the indented contout C.

d11(s) + c5d11(s) = (s+1)
2
[(s+l) +

Recall that the order of zero, A , of det(sI_A
i
)

is equal to the McMillan degree of C at its etc. More generally, d11 has mul t ip le zero(s) if
pole A — which we denote by l(Ci;A )

i
[14,151. and only If its discriminant III 0 [16).

Thus Since A ll is a polynominal in the coeff icien ts of
= E E A (G

i
;A) d11, it is clear tha t mul t iple zeros are no t

1.1,2 A generic [2].
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• Consider now the ef f ec t  of an arbitrary small on Fig. 2: the ith scalar input of C can only
allowed perturbation on the McMillan degree of affect the scalar input v of the unstAble sub—

• 
C
1 
at A k, where A is a simple pole with system through the gain I~ ; similarly the unstable

• 
- Re A k > 0. Usual~y only some of the n2 elemen ts subsystem output z is also scalar and is fanned out

of C~ have a pole at Ak and for any sufficiently 
to the Ith output of C~ through gain 

~~ 
Clearly

small allowed perturbation , if the (i,k) elemen t the iisidue of C
1 
at p is the dyad (i.e. a rank—

of C
1 

has no pol e at 1k’ then the (i,k) element 
one matrix!) R ~8T where •

~ 
— 

~~l’~ 2 
• of G

1
+1C

1 
will still have no pole in a small 8T (11.82... .,8). Now any small perturbation

neighborhood of Ak. Consequen tly, only the In the physical parameters (-y ,~~ ), 1 1,2,... ,n
nonzero elements in the residue matrix R

k 
of and p will not change the rant o~ 12. because the

C
1 
at Ak are affec ted by the allowed perturbations

. dyadic structure of R is dictated by the nature of
the in terconnec tion of the subsystems cons titut ing

Thus R is a structured matrix in the sense ofko C1, and not by the numerical value of the parameters.
Shields and Pearson [17 ,18] i.e., it has a fixed Another way of viewing this fact is to say: the
pattern of zero elements. Let be the number only meaningful physical parameters which determine
of coefficients which specify G

1
. The generic R are the 2n scalars y

1
, y

2 
y ,  8

1.82... 
.,8

n
rank [17,181 of the structured matrix 

~ko is To take the abs trac t mathema tical poin t of view
defined to be the maximal rank that ~~~ achieves that R is an array of n2 real numbers, and there—
as a func tion of these parameters. R.~ does fore n2 independent perturbations of its parameters
not achieve its generic rank only for parameter are appropriate is mathematical fiction , and not
values in some proper , closed, nowhere—dense an analysis o f the physical system under consider—
variety v C ~~V1 Consequently, if the rank of ation.
the nominal R.,( is less than its generic rank , The lesson of this remark is that before consider—
then, for some arbitrarily small allowed ing robustness, one should go back to the physical
perturbation, the rank of R.Ko 

will jump to its model of the system under consideration and trace
generic rank. Thus we have the ou t the e f f e c t of per turba tions of the physical

parameters of the model on the coefficients of the
Robustness Result 111.2. mathematical representation. Only in this way,

the engineer will assure himself that the allowed
Suppose that all C

+
_poles of and of C

2 
are perturbations he worries about per tain to physical

simple and tha t for  each of these poles the reality and not to mathematical fiction.

nominal residue matrix has a rank equal to its
generic rank; if the given feedback system is Remark 111.2: There is another case where

exp. stable at the nominal data point, then for per turba tions are more res tricted than those

any suf ficiently small allowed perturbation, the considered in Case I I I :  in many models New ton ’s

resulting perturbed system is still exp. stable, law dictates a second order pole at the origin —
say in the transfer  func t ion from the external

Fur thermore , if the nominal residue matrix of some forces  and the cen ter of mass — . Clearly this
second order pole is not subjec t to per turba tionsC

+
_pole of either C

1 
or 02, has a rank less than 

due to measuremen t or manufacturing errors!its generic rank , and if the nominal sys tem S is
exp. stable, then fo r  some arbitrarily small
allowed perturbation , the resulting per turbed Example: Consider the planar mechanical system

described by
system is unstable. U — ky 2 

=

Remark 111.1: The allowed perturbations considered
in Case III appear quite reasonable. However, we my

2 
= u

2
.

should be on guard tha t they might include
per turba tions tha t have no physical meaning for  the where (u 1, u2) is the app lied force , (y1,y 2

) is the

case at hand . For example, this could occur if position of the particle of mass m and the

instead of being specif ied by a collection physical parameters are m > 0 and k > 0. Here

of n2 rational functions — the entries of the r —l —2 —2 —41 r —2 85 41m s m ks
matrix C

l 
— were specified by a block diagram C(s)

delineating the interconnections between the 
— L ~ 2 I = I —20 m s  J L~ 

as j
subsystems constituting C~ . In that case the
appropriate perturbations to consider are not where we put a = m ’1, I = m’2k. Clearly, in this

arbitrary perturbations in all the coefficients in example the second order pole of C and the fourth

the n2 ra tional func t ion specifying C but ra ther order pole of C are no t subjec t to per turba tions

perturbations in the parameters specifying the 
when the physical parame ters a, B are perturbed .
In the presen t case , the McMillan degree at thesubsys tems cons titut ing C~ . This is illustrated 
unstable pole (s 0) is insensitive to small

by the following example. perturbations in the phy~ica1 parameters. To

Example. Suppose that C consists of a collection check this write C(s) 
~~ 

R.K
s
~~
4
; then A (G;0) is

of subsystems in series iind in parallel (no k—0
feedback!) and that only one subsystem has an given by the rank of the Mankel matrix [15]
uns table pole , say at p. with Re p > 0. The
con tr ibu tion of tha t subsystem to C~ is exhibited
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• 113 R
2 

R
1 

R
0 allowed parameter perturbation in Case 1. TheI at (3,1) position. Clearly [IA ,O,O,OJ is an

I R R R 0I 2 1 ~ 
(1,2) position minor of (sI—A—IA) is given by

14 I~ 
R 0 00 O —1 0 1

L12.0 0 0 0 2 Also1-a a 0 
o}

10 81 ra 01 

de
t[0 O s O  

as.

1 O O s
where R — Eo oj , R

2 )
~ ~J and the others 

det (sI—(A+IA)J — s
3
(s—l)

2
.0

are zero. It is easily checked that for all
allowed physical values (namely, a > 0, B - 0) Therefore the numerator polynomial of (2,1) element
A (G;0) = 4 and also that the generic rank of H of C+IG has degree zero. (Note the cancellation!)

0
is 4, [17, p. 2111. Thus if this transfer function Due to the increase in degree of the numera tor

C were the forward gain of a closed—loop system polynomial of (2,1) element, C+IC is unattainable

with an exponentially stable feedback gain from C by 
~~~ 

allowed parameter perturbation of

K(s) — diag(k (s),k (s)) then p , the number of Case III.
1 2 0+

required counterclockwise encirciements, would be vi. Conclusion
4 and it would be robus t under ~~~ per turba tion of
the physical parame ters o~ and B. U In this paper we studied the robustness of the

F ‘ exponential stability of continuous—time , linear ,
Relation between the effect of parameter time—invariant , lumped , multi—input multi—o~...putperturbations in the three cases above, feedback systems. We presented robustness results

Consider a given transfer function C(s), one of 
for three types of system representations with
corresponding sets of allowed parameter

its minimal state—space realization [A,B,C,D] and perturbations.
one of its right—coprime factorizations (N .0 ).r r
Offhand we might think that if some allowed The robustness results above were obtained assuming
parameter perturbation in Case I leads to the that the two subsystems C

1 
and C, have the same

transfer function G+IC, then there exists some number of inputs and outputs , ait the results can
allowed parameter perturbation in Case II which be extended , af ter simple modif ica tions , to the
leads to the same transfer function C+IG, and case where the number of inputs and outputs of each
so on. In other words, we might think that the subsystems are different.
parameter perturbations in the three cases are,
in some sense , equivalent. This is not the case: Also since all the arguments used are purely
indeed Remark 11.1 shows that for some coprime algebraic and are based on simple proper ties of
factorization (N ,D ) there is some aribtrarily rational functions and polynomials, all ther r
samll allowed parameter perturbation (of Case I I )  results above apply equally well to the discrete—
which will increase the degree of the characteristic time case except that in Robustness Result 111.1,
polynomial, this, however, is impossible under C should be interpreted as the unit circle with

~ allowed parameter perturbation in Case I. inward indentation to avoid the poles of C and C2,
lying on the uni t circle, and C should be

1

Similarly the example below shows that for some in terpre ted as the “ou tside” of
1
C (more precisely

C(s) there is some arbitrarily small allowed the unbounded connected component of C—C).
parameter perturbation of Case I which leads to
some transfer function C+IG unattainable by 

~ ~~~~~~~ Aci~~owledgemen t
allowed parameter perturbation of Case III.

Research sponsored by the National Science
Example: Consider a transfer function C(s) with Foundation Crant ENC74—06651—AOl and the Joint
the minimal state-space representation [A,B,C,D ] Services Electronics Program Contract
where F44620—7l—C—0087.
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